skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Melendez-Vazquez, Fernando"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Extreme environments serve as natural laboratories for studying evolutionary processes, with caves offering replicated instances of independent colonizations. The timing, mode and genetic underpinnings underlying cave-obligate organismal evolution remain enigmatic. We integrate phylogenomics, fossils, palaeoclimatic modelling and newly sequenced genomes to elucidate the evolutionary history and adaptive processes of cave colonization in the study group, the North American Amblyopsidae fishes. Amblyopsid fishes present a unique system for investigating cave evolution, encompassing surface, facultative cave-dwelling and cave-obligate (troglomorphic) species. Using 1105 exon markers and total-evidence dating, we reconstructed a robust phylogeny that supports the nested position of eyed, facultative cave-dwelling species within blind cavefishes. We identified three independent cave colonizations, dated to the Early Miocene (18.5 Ma), Late Miocene (10.0 Ma) and Pliocene (3.0 Ma). Evolutionary model testing supported a climate-relict hypothesis, suggesting that global cooling trends since the Early–Middle Eocene may have influenced cave colonization. Comparative genomic analyses of 487 candidate genes revealed both relaxed and intensified selection on troglomorphy-related loci. We found more loci under relaxed selection, supporting neutral mutation as a significant mechanism in cave-obligate evolution. Our findings provide empirical support for climate-driven cave colonization and offer insights into the complex interplay of selective pressures in extreme environments. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026